An Explicit Coupled Method of FEM and Meshless Particle Method for Simulating Transient Heat Transfer Process of Friction Stir Welding

Author:

Xiao Yihua1ORCID,Wu Hecheng1ORCID

Affiliation:

1. School of Mechatronics and Vehicle Engineering, East China Jiaotong University, Nanchang 330013, China

Abstract

Friction stir welding (FSW) is a favorable welding technology for aluminum alloys. The FSW process involves complex heat and mass transfer. Explicit meshless particle methods are currently popular methods for simulating the process, but they require expensive computational cost. Coupling explicit finite element method (FEM) and meshless particle methods can ease the problem by making use of high efficiency of FEM and advantages of meshless particle methods. Though many efforts have been made to couple FEM and meshless particle methods for transient dynamics problems, coupling them for transient heat transfer problems is seldom addressed. In this work, we focus on treating this problem. We developed an explicit coupled method of FEM and the meshless particle method presented in a previous work and used it to simulate the thermal process during FSW. In the method, FEM using lumped heat capacity matrix and low-order numerical integration is constructed to obtain high efficiency. A new coupling algorithm is proposed to link thermal calculations of the weak-form FEM and the strong-form meshless particle method. Forward Euler method is used for time integration to achieve an explicit algorithm. The coupled method is used to calculate a numerical example having analytical solution. Calculated results show that it can achieve a good accuracy. The method is employed to simulate FSW of Al 6061-T6 plates. It predicts thermal cycles in good agreement with experimental results. It shows an accuracy comparable to that of the meshless particle method while having a higher efficiency than the latter.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3