Numerical Simulation of the Fractional Dispersion Advection Equations Based on the Lattice Boltzmann Model

Author:

Wang Boyu1ORCID,Zhang Jianying2,Yan Guangwu1

Affiliation:

1. College of Mathematics, Jilin University, Changchun 130012, China

2. School of Mathematics and Statistics, Changchun University of Technology, Changchun 130012, China

Abstract

The fractional dispersion advection equations (FDAEs) have recently attracted considerable attention due to their extensive application in the fields of science and engineering. For example, it has been shown that the anomalous solute transport behaviour that exists in hydrology can be well explained by introducing FDAEs. Therefore, the study of FDAEs has profound significance for understanding real transport phenomena in nature. Nevertheless, the existing algorithms for the FDAEs are generally intricate and costly. Therefore, exploiting an efficient solution technique has been a concern for scientists. In an effort to overcome this challenge, a promising lattice Boltzmann (LB) model for the FDAEs is presented in this paper. The Riemann–Liouville definition and the Grünwald–Letnikov definition are introduced for the time derivatives. In addition, Chapman–Enskog analysis is applied to recover the FDAEs. To test the validity of the model, three numerical examples are carried out. In addition, a comparative study of the proposed model and the classical implicit finite difference scheme is also conducted. The numerical results show that the model is suitable for simulating FDAEs.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3