Synthesis of a High-Coercivity FePt–Ag Nanocomposite Magnet via Block Copolymer-Templated Self-Assembly

Author:

Wakayama Hiroaki1ORCID,Yonekura Hirotaka1

Affiliation:

1. Toyota Central R&D Laboratories, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan

Abstract

Magnetic recording media are composed of magnetic thin films consisting of magnetically isolated crystallites. For practical use of magnetic particles as recording media, it will be necessary to realize high coercivity by fabricating nanocrystalline grains and forming grain boundaries with the nonmagnetic phase. In this study, a high-coercivity FePt–Ag nanocomposite magnet was synthesized by means of block copolymer-templated self-assembly. Precursors of Fe, Pt, and Ag were introduced into a polymer block, and the resulting material was oxidized and then reduced to form a nanocomposite consisting of FePt nanoparticles surrounded by a matrix of Ag. X-ray diffraction analysis revealed that the introduction of Ag did not significantly affect the crystalline ordering of the FePt. The addition of Ag increased the coercivity by 53% (from 11.1 to 17.0 kOe). Our results suggest that the grain boundaries of the nonmagnetic Ag metal acted as pinning sites, disrupting magnetic coupling between individual FePt nanocrystallites and hindering domain wall motion at an external magnetic field.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3