MEMS Inertial Sensor for Strata Stability Monitoring in Underground Mining: An Experimental Study

Author:

Zhang Kaizhi1,Ji Songtao12ORCID,Zhang Yang3,Zhang Jie4,Pan Ruikai5

Affiliation:

1. School of Mining Engineering, Guizhou Institute of Technology, Guiyang 550003, China

2. School of Earth and Environmental Sciences, The University of Queensland, Brisbane 4067, Australia

3. School of Electrical Engineering and Telecommunications, The University of New South Wales, Sydney 2052, Australia

4. College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China

5. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400030, China

Abstract

To investigate the fracture and deformation characteristics of the strata in underground mining as well as the effectiveness and sensitivity of the MEMS inertial sensor for strata stability monitoring, a low cost, small size, and easy implementation inertial MEMS sensor module was redeveloped. Sensor modules were installed on roof strata in an underground mining equivalent material simulation experiment. Then, monitoring signal of two modules near the middle and end section of caving strata was processed. The processed signal presents stepped change, and each step consists a vibration stage and a stable stage. Further analysis of each stage, a strategy to estimate the deformation and stability of strata, can be reached: the duration of each vibration stage and complete stage with rising trend indicates that the deformation of strata is growing to the ultimate state. In this study, this method could recognize the destructive deformation of strata at least 1 hour before the strata caving.

Funder

Guizhou Education Department

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3