Object-Based Distinction between Building Shadow and Water in High-Resolution Imagery Using Fuzzy-Rule Classification and Artificial Bee Colony Optimization

Author:

He Yuanrong1,Zhang Xinxin1ORCID,Hua Lizhong1

Affiliation:

1. College of Computer & Information Engineering, Xiamen University of Technology, Xiamen 361024, China

Abstract

Due to the high similarity of the spectra of urban water and building shadows, high-resolution satellite imagery often confuses and wrongly classifies these features. To address this problem, we propose an object-based method for distinguishing building shadow from water using an artificial bee colony algorithm. In the method, four spectral ratio bands are first calculated as additional input parameters for improving the accuracy of segmentation results. During the segmentation, a series of statistical factors, such as spectrum, ratio, and sharp features, are calculated to make up for defects in the high-resolution imagery. Finally, we propose a fuzzy-rule-based classifier to generate extraction rules. The classifier is based on artificial bee colony optimization, which employs the geometric mean (G-mean) as fitness function. The proposed method was carried out on two test sites in Xiamen City. The experimental results based on GF-1 satellite date show that, compared with SVM method, the proposed method improved the overall accuracy of extraction by approximately 6% to 15% and the kappa coefficient values by approximately 0.1 to 0.2. The analysis of the extraction rules also proves that the red/NIR band and the length-width ratio band are significantly influenced by the distinction between building shadow and water.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3