Insufficient Discriminatory Power of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry Dendrograms to Determine the Clonality of Multi-Drug-ResistantAcinetobacter baumanniiIsolates from an Intensive Care Unit

Author:

Rim John Hoon1,Lee Yangsoon2ORCID,Hong Sung Kuk1,Park Yongjung1,Kim MyungSook1,D’Souza Roshan1,Park Eun Suk3,Yong Dongeun1,Lee Kyungwon1

Affiliation:

1. Department of Laboratory Medicine, Severance Hospital, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea

2. Department of Laboratory Medicine, Hanyang University College of Medicine, Hanyang University Seoul Hospital, Seoul, Republic of Korea

3. Department of Infection Control, Severance Hospital, Seoul, Republic of Korea

Abstract

While pulsed-field gel electrophoresis (PFGE) is recognized as the gold standard method for clonality analysis, MALDI-TOF MS has recently been spotlighted as an alternative tool for species identification. Herein, we compared the dendrograms of multi-drug-resistant (MDR)Acinetobacter baumanniiisolates by using MALDI-TOF MS with those by using PFGE. We used direct colony and protein extraction methods for MALDI-TOF MS dendrograms. The isolates with identical PFGE patterns were grouped into different branches in MALDI-TOF MS dendrograms. Among the isolates that were classified as very close isolates in MALDI-TOF MS dendrogram, PFGE band patterns visually showed complete differences. We numeralized similarity among isolates by measuring distance levels. The Spearman rank correlation coefficient values were 0.449 and 0.297 between MALDI-TOF MS dendrogram using direct colony and protein extraction method versus PFGE, respectively. This study is the first paper focusing solely on the dendrogram function of MALDI-TOF MS compared with PFGE. Although MALDI-TOF MS is a promising tool to identify species in a rapid manner, our results showed that MALDI-TOF MS dendrograms could not substitute PFGE for MDRAcinetobacter baumanniiclonality analysis.

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3