Self-Healing of Active Distribution Networks by Accurate Fault Detection, Classification, and Location

Author:

El-Tawab Sally1ORCID,Mohamed Hassan S.1,Refky Amr1ORCID,Abdel-Aziz A. M.1

Affiliation:

1. Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt

Abstract

The power system self-healing concept needs accurate and reliable fault detection, classification, and location (FDCL). This research proposes a novel and robust FDCL approach for distribution networks (DNs) in proportion to self-healing requirements. The proposed algorithm utilized a discrete wavelet transform (DWT) to decompose the measured current and zero sequence current component of only one terminal (substation) to detect and classify all fault types with the identification of the faulted phase (s). The fault location is achieved by integrating DWT and support vector machine (SVM). The data for training were extracted using DWT and collected, and then SVM was trained to locate the faulted section. The simplicity of the applied approach, ignoring DG’s data that is merged into the system, reduced training data and time, ability to diagnose all fault types, and high accuracy are the most significant contributions. The proposed techniques are tested on IEEE 33 bus DN with two distributed generation (DG) units, which are simulated in MATLAB. The simulation results demonstrate that the proposed methods give more accurate and reliable results for diagnosing the faults (FDCL) of various fault sorts, DN size, and resistance levels.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Single-Ended Data Based Fault Classification In Transmission Line Using Discrete Wavelet Transform;2023 1st International Conference on Cognitive Computing and Engineering Education (ICCCEE);2023-04-27

2. A Novel Proposed Algorithm to Enhance the Overcurrent Relays’ Performance in Active Distribution Networks;International Transactions on Electrical Energy Systems;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3