Affiliation:
1. Department of Electrical Engineering, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Abstract
The power system self-healing concept needs accurate and reliable fault detection, classification, and location (FDCL). This research proposes a novel and robust FDCL approach for distribution networks (DNs) in proportion to self-healing requirements. The proposed algorithm utilized a discrete wavelet transform (DWT) to decompose the measured current and zero sequence current component of only one terminal (substation) to detect and classify all fault types with the identification of the faulted phase (s). The fault location is achieved by integrating DWT and support vector machine (SVM). The data for training were extracted using DWT and collected, and then SVM was trained to locate the faulted section. The simplicity of the applied approach, ignoring DG’s data that is merged into the system, reduced training data and time, ability to diagnose all fault types, and high accuracy are the most significant contributions. The proposed techniques are tested on IEEE 33 bus DN with two distributed generation (DG) units, which are simulated in MATLAB. The simulation results demonstrate that the proposed methods give more accurate and reliable results for diagnosing the faults (FDCL) of various fault sorts, DN size, and resistance levels.
Subject
Electrical and Electronic Engineering,General Computer Science,Signal Processing
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献