Stress Analysis and Structural Optimization of Steel–Concrete Joint of Zhonghua Road Bridge in Liaocheng

Author:

Jin Jie1,Zhang Junlin2,Li Ye2,Xie Zengkui3ORCID,Yang Lipo4

Affiliation:

1. Institute of Architectural and Engineering of Liaocheng University, Liaocheng 252001, China

2. Beijing Engineering CoMPany Limited of China Railway Urban Construction Group, Beijing 100024, China

3. CCCC Highway Bridges National Engineering Research Centre Co., Ltd., Beijing 100088, China

4. Tianjin Municipal Engineering Design & Research Institute, Tianjin 300392, China

Abstract

Based on Zhonghua Road Bridge in Liaocheng city, a single tower hybrid cable-stayed bridge, the stress of the steelconcrete joint of the girder is studied using the finite element method with the software MIDAS and ANSYS. The beam element model of the whole bridge is established in MIDAS CIVIL, from which the internal forces of the critical sections of the steel–concrete joint under six adverse conditions are obtained. Then, the results are applied in the refined solid-shell finite element model established in ANSYS. With the stress analysis, it is found that when the steel–concrete joint is used in the girder of the single tower cable-stayed bridge, both the compressive strength of concrete and the tensile strength of steel can be fully used, and the structural stiffness can be smoothly transferred through the two different materials in the joint, which makes the structural behavior more reasonable. The detailed stress analysis also shows that it is prone to generate considerable stress concentration at the corners and the connection between the steel lattice chamber and the pressure bearing plate, and the concentration can be avoided by local stiffening and smoothing of the chamfers. The sensitivity analysis of the web thickness in the joints and bearing plates showed that increasing the thickness of the intermediate web would lead to a moderate reduction in the stress of the web itself, while the stress in the steel member remained relatively constant. However, when the thickness of the bearing plate is increased from 60 to 80 mm, the stress of each part of the steel plate in the steel grid will be significantly reduced, and the maximum reduction can reach 48%. The improvement of concrete strength has little effect on the stress of the steel cell, and the C50 concrete strength grade used in the design is more reasonable.

Funder

Tianjin Transportation Commission and Tianjin Municipal Engineering Design & Research Institute

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3