Qingchang Wenzhong Decoction Alleviates DSS-Induced Inflammatory Bowel Disease by Inhibiting M1 Macrophage Polarization In Vitro and In Vivo

Author:

Lu Qiongqiong12ORCID,Li Junxiang3,Ding Panghua1,Mao Tangyou3,Shi Lei3,Sun Zhongmei1,Tan Xiang1ORCID,Jiang Hui1,Dong Junying1,Li Yalan1,Yang Xiaojun2ORCID,Shi Rui3ORCID

Affiliation:

1. Graduate School, Beijing University of Chinese Medicine, Beijing, China

2. Department of Gastroenterology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China

3. Department of Gastroenterology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China

Abstract

Background. An imbalance of macrophage M1/M2 polarization significantly influences the pathogenesis of inflammatory bowel disease. Qingchang Wenzhong decoction (QCWZD) has a proven therapeutic effect on patients with inflammatory bowel disease (IBD) and can significantly inhibit the inflammatory response in mice with colitis. However, its effect on macrophages during IBD treatment remains nebulous. Aim of the Study. Explore the mechanism underlying QCWZD effects in a dextran sulfate sodium (DSS)-induced colitis mouse model in vivo and RAW264.7 cell in vitro by observing macrophage polarization dynamics. Methods. The main active components of QCWZD were determined using high-performance liquid chromatography. Surface marker expression on M1-type macrophages was analyzed using flow cytometry and immunofluorescence. The effect on inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) released by M1 type macrophages was determined using ELSA and RT-PCR. The expression of key proteins in the JAK2/STAT3 signaling pathway was analyzed using western blotting. QCWZD cytotoxicity in macrophages was measured using CCK8 and Annexin V-FITC/PI assays. Results. The main active components of QCWZD were berberine chloride, coptisine chloride, epiberberine chloride, gallic acid, ginsenoside Rg1, ginsenoside Rb1, indigo, indirubin, notoginsenoside R1, palmatine chloride, and 6-curcumin. QCWZD markedly alleviated DSS-induced colitis in mice, as revealed by the rescued weight loss and disease activity index, attenuated the colonic shortening and mucosal injury associated with the inhibition of M1 macrophage polarization and expression of related cytokines, such as IL-6 and TNF-α, in vivo and in vitro. Furthermore, QCWZD decreased the iNOS, JAK2, and STAT3 levels in vivo and in vitro, regulating the JAK2/STAT3 signaling pathway. Conclusion. QCWZD administration improves intestinal inflammation by inhibiting M1 macrophage polarization. The JAK2/STAT3 signaling pathway may mediate the effects of QCWZD on M1 macrophage polarization in colitis treatment. This study presents a novel macrophage-mediated therapeutic strategy for the treatment of IBD.

Funder

Dongfang Hospital, BUCM

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3