Mechanism Study of Stress Corrosion Behavior under Tensile and Compressive Stresses for Welded Joint Used in Nuclear Turbine Rotor

Author:

Chu Tongjiao1ORCID

Affiliation:

1. Department of Material Processing Engineering, School of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, China

Abstract

Stress corrosion damage containing pitting and cracking was investigated for NiCrMoV steel-welded joint used in nuclear turbine rotor in 3.5% NaCl solution. The U-bend specimen containing tensile face and compressive face was adopted which was conducive to study the effects of stress on pitting and stress corrosion cracking. On tensile surface of U-bend specimen, pit grew in open environment and was converted into crack covered with passivated film. Interestingly, corrosion pit was also found on compressive surface, which might attribute to this location creating enclosed environment causing Cl- to diffuse hardly. Then, pit grew under the occluded oxide crust composed of special crystalline corrosion products. When pit approached to critical size, crack initiated from it. The critical size of pit for crack initiation from pit was 35 μm on tensile surface and 95 μm on compressive surface. The sensitivity of crack initiation in tensile surface was higher than that in compressive surface. Then, cracking on compressive surface was controlled by slip dissolution mechanism, that is, dislocation outcrop generated through plastic deformation during manufacturing and absorbed Cl- in enclosed environment to accelerate metal dissolution and film rupture. Thereupon, the stress corrosion cracking on compressive surface was able to be maintained. The findings compared corrosion damage modes caused by the two kinds of stress and emphasized the nonignorable role of compressive stress on stress corrosion damage.

Funder

Liaoning Technical University

Publisher

Hindawi Limited

Subject

Instrumentation,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3