Affiliation:
1. School of Electrical Engineering, Vellore Institute of Technology, Vellore, India
Abstract
Worldwide, electric vehicle (EV) sales are booming nowadays due to the rapid increase in the cost of fossil fuels. Lithium-ion batteries are very familiar in the EV industry because of their high energy per unit mass relative to other electric energy storage systems. To obtain the required voltage, several lithium-ion batteries are connected serially. Due to manufacturing inconsistencies, the voltage of serially connected cells is not always equal, which might result in a charge imbalance. This imbalance may reduce the battery’s life span due to the action of undercharging and overcharging. Battery charge equalisation (BCE) is challenging because it requires a constant voltage level in each cell. Various topologies and control strategies have been proposed in the past literature to build and improve the BCE. This study extracts the recently proposed DC-DC converter-based topologies for BCE. This study then gives a comparative analysis of various control strategies used in BCE and ends with implementing control strategies with BCE topology using a DC-DC converter. This study incorporates contextualised topologies used by BCE with design, operation, and applications. Extensive simulation results are provided to compare the performance of DC-DC converter-based BCE topologies in balancing speed. Also, a comprehensive comparison of various converter topologies and control strategies has been carried out for future investigation.
Subject
Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献