Point of Common Coupling Voltage Modulated Direct Power Control of Grid-Tied Photovoltaic Inverter for AC Microgrid Application

Author:

Ahmad Shameem12ORCID,Mubarak Hamza23ORCID,Jhuma Umme Kulsum12ORCID,Ahmed Tofael4ORCID,Mekhilef Saad5ORCID,Mokhlis Hazlie2ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering, American International University–Bangladesh, Dhaka 1229, Bangladesh

2. Department of Electrical Engineering, Faculty of Engineering, Universiti Malaya, Kuala Lumpur 50603, Malaysia

3. School of Engineering and Built Environment, Griffith University, Southport, QLD 4222, Australia

4. Department of Electrical and Electronic Engineering, Chittagong University of Engineering & Technology, Chittagong 4349, Bangladesh

5. School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia

Abstract

A direct power control (DPC) approach is proposed in this study for a grid-tied photovoltaic (PV) voltage source inverter (VSI) to regulate active and reactive power flow directly in between utility grid and microgrid (MG) by controlling point of common coupling (PCC) voltage. The proposed PCC voltage modulated (PVM) theory-based DPC method (PVMT-DPC) is composed of nonlinear PVM, nonlinear damping, conventional feedforward, and feedback PI controllers. For grid synchronization rather than employing phase-locked-loop (PLL) technology, in this study, direct power calculation of the PCC voltage and current is adopted. Subsequently, at PCC, the computed real and reactive powers are compared with reference powers in order to generate the VSI’s control signals using sinusoidal pulse width modulation (SPWM). Because of the absence of the PLL and DPC method adoption, the suggested controller has a faster convergence rate compared to traditional VSI’s power controllers. Additionally, it displays nearly zero steady-state power oscillations, which assure that MG’s power quality is improved significantly. To validate the proposed PVMT-DPC method’s performance, real-time simulations are conducted via real-time digital simulator (RTDS) for a variety of cases. The obtained results demonstrate that using the proposed PVMT-DPC approach, PV VSI can track the reference power within 0.055 s where the output power has low steady-state oscillations and output current has lower total harmonic distortion (THD) of 1.68%.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3