Overexpression ofCaAPXInduces Orchestrated Reactive Oxygen Scavenging and Enhances Cold and Heat Tolerances in Tobacco

Author:

Wang Jiangying12,Wu Bin1,Yin Hengfu1ORCID,Fan Zhengqi1,Li Xinlei1,Ni Sui3,He Libo14ORCID,Li Jiyuan1ORCID

Affiliation:

1. Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Zhejiang Provincial Key Laboratory of Tree Breeding, Hangzhou, Zhejiang 311400, China

2. Lianyungang Academy of Agricultural Sciences, Flower Research Center, Lianyungang, Jiangsu 222000, China

3. School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China

4. College of Horticulture and Landscape Architecture, Hunan Agricultural University, Changsha, Hunan 410128, China

Abstract

Ascorbate peroxidase (APX) acts indispensably in synthesizing L-ascorbate (AsA) which is pivotal to plant stress tolerance by detoxifying reactive oxygen species (ROS). Enhanced activity of APX has been shown to be a key step for genetic engineering of improving plant tolerance. However it needs a deeper understanding on the maintenance of cellular ROS homeostasis in response to stress. In this study, we identified and characterized anAPX(CaAPX) gene fromCamellia azalea. Quantitative real-time PCR (qRT-PCR) analysis showed thatCaAPXwas expressed in all tissues and peaked in immature green fruits; the expression levels were significantly upregulated upon cold and hot stresses. Transgenic plants displayed marked enhancements of tolerance under both cold and heat treatments, and plant growth was correlated withCaAPXexpression levels. Furthermore, we monitored the activities of several ROS-scavenging enzymes includingCu/Zn-SOD,CAT,DHAR, andMDHAR, and we showed that stress tolerance was synchronized with elevated activities of ROS-scavenging. Moreover, gene expression analysis of ROS-scavenging enzymes revealed a role ofCaAPXto orchestrate ROS signaling in response to temperature stresses. Overall, this study presents a comprehensive characterization of cellular response related toCaAPXexpression and provides insights to breed crops with high temperature tolerances.

Funder

Zhejiang Science and Technology Major Program

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3