Enhancement of Fluorescence and Photostability Based on Interaction of Fluorescent Dyes with Silver Nanoparticles for Luminescent Solar Concentrators

Author:

El-Molla Sara12ORCID,Mansour A. F.1,Hammad A. E.13ORCID

Affiliation:

1. Physics Department, Faculty of Science, Zagazig University, Zagazig, Egypt

2. Institute for Nanoelectronics, Technical University of Munich, 80333 Munich, Germany

3. Basic Sciences, College of Engineering, University of Business and Technology (UBT), Jeddah, Saudi Arabia

Abstract

For luminescent solar concentrators (LSCs), it is important to enhance the fluorescence quantum yield (FQY) and photostability. Our measurements have demonstrated that the addition of silver nanoparticles to dye solution causes broadening of absorption bands, so the spectral range of sunlight absorbed by LSC has increased. Silver nanoparticles (NPs) were characterized by X-ray diffraction (XRD) and UV-Vis absorption spectra. UV-Vis spectrum showed a single peak at 442 nm due to the surface plasmon resonance (SPR). The position of SPR peak exhibited a red shift after the sample was exposed to UV irradiation (unfiltered light). The optical band gap values have a reduction from 2.46 to 2.37 eV after irradiation for 960 minutes. Such reduction in optical band gap may be due to change in particle size calculated using Mie theory. The photostability of organic dyes used was improved after adding silver nanoparticles. The area under fluorescence spectra of dyes with silver NPs increased by 41–31% when compared with identical dye concentrations without silver nanoparticles as a result of interaction of the species with silver NPs.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3