An Inhibitor of DRP1 (Mdivi-1) Alleviates LPS-Induced Septic AKI by Inhibiting NLRP3 Inflammasome Activation

Author:

Liu Ruijin1ORCID,Wang Si-cong1ORCID,Li Ming2,Ma Xiao-hui3,Jia Xiao-nan3,Bu Yue1,Sun Lei1,Yu Kai-jiang34ORCID

Affiliation:

1. Department of Critical Care Medicine, The Harbin Medical University Cancer Hospital, Harbin, 150081 Heilongjiang Province, China

2. Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150081 Heilongjiang Province, China

3. Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001 Heilongjiang Province, China

4. Institute of Critical Care Medicine and Institute of Sino Russian Medical Research Center of Harbin Medical University, 150 Hapin Road, Harbin 150081, China

Abstract

Mitochondria play an essential role in energy metabolism. Oxygen deprivation can poison cells and generate a chain reaction due to the free radical release. In patients with sepsis, the kidneys tend to be the organ primarily affected and the proximal renal tubules are highly susceptible to energy metabolism imbalances. Dynamin-related protein 1 (DRP1) is an essential regulator of mitochondrial fission. Few studies have confirmed the role and mechanism of DRP1 in acute kidney injury (AKI) caused by sepsis. We established animal and cell sepsis-induced AKI (S-AKI) models to keep DRP1 expression high. We found that Mdivi-1, a DRP1 inhibitor, can reduce the activation of the NOD-like receptor pyrin domain-3 (NLRP3) inflammasome-mediated pyroptosis pathway and improve mitochondrial function. Both S-AKI models showed that Mdivi-1 was able to prevent the mitochondrial content release and decrease the expression of NLRP3 inflammasome-related proteins. In addition, silencing NLRP3 gene expression further emphasized the pyroptosis importance in S-AKI occurrence. Our results indicate that the possible mechanism of action of Mdivi-1 is to inhibit mitochondrial fission and protect mitochondrial function, thereby reducing pyroptosis. These data can provide a potential theoretical basis for Mdivi-1 potential use in the S-AKI prevention.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3