The Innate Immune System in Alzheimer’s Disease

Author:

Boutajangout Allal1234,Wisniewski Thomas125ORCID

Affiliation:

1. Department of Neurology, New York University School of Medicine, Alexandria East River Science Park, 450 East 29th Street, Room 802, New York City, NY 10016, USA

2. Psychiatry Department, New York University School of Medicine, Alexandria East River Science Park, 450 East 29th Street, Room 802, New York City, NY 10016, USA

3. Physiology and Neuroscience Department, New York University School of Medicine, Alexandria East River Science Park, 450 East 29th Street, Room 802, New York City, NY 10016, USA

4. King Abdulaziz University, School of Medicine, Jeddah, KAU 21589, Saudi Arabia

5. Pathology, New York University School of Medicine, Alexandria East River Science Park, 450 East 29th Street, Room 802, New York City, NY 10016, USA

Abstract

Alzheimer’s disease (AD) is the leading cause for dementia in the world. It is characterized by two biochemically distinct types of protein aggregates: amyloidβ(Aβ) peptide in the forms of parenchymal amyloid plaques and congophilic amyloid angiopathy (CAA) and aggregated tau protein in the form of intraneuronal neurofibrillary tangles (NFT). Several risk factors have been discovered that are associated with AD. The most well-known genetic risk factor for late-onset AD is apolipoprotein E4 (ApoE4) (Potter and Wisniewski (2012), and Verghese et al. (2011)). Recently, it has been reported by two groups independently that a rare functional variant (R47H) of TREM2 is associated with the late-onset risk of AD. TREM2 is expressed on myeloid cells including microglia, macrophages, and dendritic cells, as well as osteoclasts. Microglia are a major part of the innate immune system in the CNS and are also involved in stimulating adaptive immunity. Microglia express several Toll-like receptors (TLRs) and are the resident macrophages of the central nervous system (CNS). In this review, we will focus on the recent advances regarding the role of TREM2, as well as the effects of TLRs 4 and 9 on AD.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3