Affiliation:
1. School of Management, China University of Mining and Technology-Beijing, Beijing 100083, China
Abstract
Carrying out early warning of systemic financial risk is a prerequisite for timely adjustment of monetary policy and macroprudential policy to effectively prevent and resolve systemic financial risks. This paper constructs a systemic financial risk monitoring and early warning system for China’s banking industry based on isolated forest anomaly detection and neural network with autocorrelation mechanism and uses low-frequency data with high credibility to effectively identify the ten factors that have the greatest impact on systemic financial risk in China’s banking industry, improving the prospective and accuracy of risk early warning. The conclusions can help regulators to adjust their policies prospectively to curb the rise of systemic financial risks.
Funder
China University of Mining and Technology
Subject
General Mathematics,General Medicine,General Neuroscience,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献