Artificial Neural Network-Based Ultrasound Radiomics Can Predict Large-Volume Lymph Node Metastasis in Clinical N0 Papillary Thyroid Carcinoma Patients

Author:

Zhu Wan1,Huang Xingzhi1,Qi Qi1,Wu Zhenghua1,Min Xiang2,Zhou Aiyun1ORCID,Xu Pan1ORCID

Affiliation:

1. Departments of Ultrasonography, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China

2. Departments of Head and Neck Otolaryngology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China

Abstract

Objective. To evaluate the ability of artificial neural network- (ANN-) based ultrasound radiomics to predict large-volume lymph node metastasis (LNM) preoperatively in clinical N0 disease (cN0) papillary thyroid carcinoma (PTC) patients. Methods. From January 2020 to April 2021, 306 cN0 PTC patients admitted to our hospital were retrospectively reviewed and divided into a training (n = 183) cohort and a validation cohort (n = 123) in a 6 : 4 ratio. Radiomic features quantitatively extracted from ultrasound images were pruned to train one ANN-based radiomic model and three conventional machine learning-based classifiers in the training cohort. Furthermore, an integrated model using ANN was constructed for better prediction. Meanwhile, the prediction of the two models was evaluated in the papillary thyroid microcarcinoma (PTMC) and conventional papillary thyroid cancer (CPTC) subgroups. Results. The radiomic model showed better discrimination than other classifiers for large-volume LNM in the validation cohort, with an area under the receiver operating characteristic curve (AUROC) of 0.856 and an area under the precision-recall curve (AUPR) of 0.381. The performance of the integrated model was better, with an AUROC of 0.910 and an AUPR of 0.463. According to the calibration curve and decision curve analysis, the radiomic and integrated models had good calibration and clinical usefulness. Moreover, the models had good predictive performance in the PTMC and CPTC subgroups. Conclusion. ANN-based ultrasound radiomics could be a potential tool to predict large-volume LNM preoperatively in cN0 PTC patients.

Funder

Nanchang University

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3