Multitargets Orientation Technique Based on Reflection Characteristic Analysis Using an Inverse Diffraction Parabolic Equation

Author:

Guo Qi1ORCID,Sun Daozong1,Li Zhen1,Lyu Shilei1,Xue Xiuyun1

Affiliation:

1. Department of Electronic Engineering, South China Agricultural University, Guangzhou 510006, China

Abstract

In this article, the inverse diffraction parabolic equation (IDPE) model based on the finite difference method is proposed, which is first applied in the multiple nonradiation targets orientation technology. In principle, the electromagnetic signal propagating in the transmission path will produce a reflected signal back to the source end while encountering the discontinuous objects. The distribution of the reflection or refraction intensity is directly associated with the distances and heights of the objects, so the location can be determined by means of analyzing the distribution. Here, according to the profile data of field intensity at the source end, the distribution of backward propagating electromagnetic waves are calculated rapidly by the IDPE. Then, the local extreme searching method is applied to search the coordinate of the convergence point of field intensity and the positions of multiple objects are finally determined. The piecewise linear function is used to model the irregular terrain. The influence of discontinuous terrain slopes on the false alarm probability of objects localization is also analyzed. The results show that the localization accuracy of the IDPE algorithm is affected by multiple factors, such as the radio frequency and sampling interval of field intensity. It is proved that the IDPE is a novel and efficient algorithm for multiple nonradiation targets orientation technology in long-range complicated terrain environment.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3