Affiliation:
1. School of Software Engineering, South China University of Technology, Guangzhou 510006, China
2. School of Computer Science and Educational Software, Guangzhou University, Guangzhou 510006, China
Abstract
The constraint-handling methods using multiobjective techniques in evolutionary algorithms have drawn increasing attention from researchers. This paper proposes an efficient conical area differential evolution (CADE) algorithm, which employs biased decomposition and dual populations for constrained optimization by borrowing the idea of cone decomposition for multiobjective optimization. In this approach, a conical subpopulation and a feasible subpopulation are designed to search for the global feasible optimum, along the Pareto front and the feasible segment, respectively, in a cooperative way. In particular, the conical subpopulation aims to efficiently construct and utilize the Pareto front through a biased cone decomposition strategy and conical area indicator. Neighbors in the conical subpopulation are fully exploited to assist each other to find the global feasible optimum. Afterwards, the feasible subpopulation is ranked and updated according to a tolerance-based rule to heighten its diversity in the early stage of evolution. Experimental results on 24 benchmark test cases reveal that CADE is capable of resolving the constrained optimization problems more efficiently as well as producing solutions that are significantly competitive with other popular approaches.
Funder
Natural Science Foundation of Guangdong Province
Subject
Multidisciplinary,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献