Affiliation:
1. College of Life Science, Northeast Forestry University, Harbin 150040, China
2. Botany Department, Faculty of Science, Menoufia University, Shebin El-koom 32511, Egypt
Abstract
Natural enzyme mimics have attracted considerable attention due to leakage of enzymes and their easy denaturation during their storage and immobilization procedure. Here in this study, for the first time, a new iron oxide hydroxide, ferrihydrite – Fe1.44O0.32 (OH) 3.68 magnetic nanoparticles were synthesized by bacterial strain named Comamonas testosteroni. The characterization of the produced magnetic nanoparticles was confirmed by transmission electron microscopy (TEM), Fourier-transform spectroscopy (FTIR), X-ray diffraction (XRD), and magnetization hysteresis loops. Further, these extracted nanoparticles were proven to have biogenic magnetic behavior and to exhibit enhanced peroxidase-like activity. It is capable of catalyzing the oxidation of 3, 3′, 5, 5′-Tetramethylbenzidine (TMB) by H2O2 to produce blue color (typical color reactions). Catalysis was examined to follow Michaelis-Menton kinetics and the good affinity to both H2O2 and TMB. The Km value of the Fe1.44O0.32 (OH) 3.68 with H2O2 and TMB as the substrate was 0.0775 and 0.0155 mM, respectively, which were lower than that of the natural enzyme (HRP). Experiments of electron spin resonance (ESR) spectroscopy proved that the BMNPs could catalyze H2O2 to produce hydroxyl radicals. As a new peroxidase mimetic, the BMNPs were exhibited to offer a simple, sensitive, and selective colorimetric method for determination of H2O2 and glucose and efficiently catalyze the detection of glucose in real blood samples.
Funder
National Natural Science Foundation of China
Subject
General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献