Affiliation:
1. Department of Mathematics, Wollega University, Nekemte, Ethiopia
Abstract
In this study, a mathematical model of the human immunodeficiency virus (HIV) and cholera co infection is constructed and analyzed. The disease-free equilibrium of the co-infection model is both locally and globally asymptotically stable if
and unstable if
. The only cholera model and only the HIV model show forward bifurcation if the corresponding reproduction numbers attain a value one. The disease-free equilibria of only the cholera and only the HIV models is locally and globally asymptotically if
, and the endemic equilibria of only the cholera model and only the HIV model are locally and globally asymptotically stable if the corresponding reproduction number is equal to one. The endemic equilibrium point of the HIV and cholera model is computed, and stability property is shown with numerical simulations. The computed partial derivatives
show that the increase of one infection contributes to the increase of other infection. Pontryagin’s maximum principle is applied to construct Hamiltonian function, and optimal controls are computed. The optimal system is solved numerically using forward and backward sweep method of Runge Kutta’s fourth-order methods. The numerical simulations are plotted using MATLAB.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献