Binocular Images Dense Matching considering Image Adaptive Color Weights and Feature Points

Author:

Xu Zhenghui1ORCID,Wang Jingxue12ORCID

Affiliation:

1. School of Geomatics, Liaoning Technical University, Fuxin 123000, China

2. Collaborative Innovation Institute of Geospatial Information Service, Liaoning Technical University, Fuxin 123000, China

Abstract

When the matching cost function in Semiglobal Matching is unstable, the inaccurate matching cost values will be propagated in the cost aggregation process. It will lead to a serious mismatching phenomenon. To address the problem, a binocular images dense matching method considering image adaptive color weights and feature points was proposed. Firstly, The Color Birchfield Tomasi (CBT) matching cost calculation method was proposed to obtain a stable initial cost volume, which combined image adaptive color weights and gradient information. Secondly, the Scale-invariant Feature Transform matching algorithm was used to extract the a priori feature points from binocular images. Then, the feature points were filtrated. The cost volume was optimized by using their coordinate information and disparity information. Finally, an aggregation path segmentation rectification method was adopted to optimize the SGM aggregation paths and reduce the propagation of incorrect paths. Experimental results demonstrate that the proposed method can effectively improve the stability and accuracy of dense matching, reduce the mismatching phenomenon, and finally produce high-quality disparity maps.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Improved Stereo Matching Algorithm Based on Sparse Window;2023 28th International Conference on Automation and Computing (ICAC);2023-08-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3