Infill Modelling Influence on Dynamic Identification and Model Updating of Reinforced Concrete Framed Buildings

Author:

Bovo Marco1ORCID,Tondi Michele2,Savoia Marco2

Affiliation:

1. DISTAL, Viale Giuseppe Fanin 48-40127, Bologna, Italy

2. DICAM, Viale Risorgimento 2-40136, Bologna, Italy

Abstract

In order to correctly capture the dynamic behavior of infilled framed buildings, the importance to take into account in seismic design the infill panels’ contribution is nowadays well recognized since they could modify in a significant way the global and local response of the whole building. Despite about sixty years of continuous research in the field, the modelling of the frame-infill interaction still represents a serious issue for the daily practical design since there is no reference model proven to be suitable to cover a wide record of possible cases. Moreover, few works are available in the literature, comparing the results of different modelling proposals with outcomes of dynamic tests on a full-scale building. To this regard, starting from the results of induced vibration dynamic tests performed on a 7-story building with reinforced concrete frames with masonry infill, in the present paper, the effects of the infill presence have been evaluated by comparing experimental outcomes, achieved using a MDOF Circle-Fit identification procedure, with the results obtained by means of numerical analyses performed on finite element models. Using a model updating procedure, the optimal width to assign to the masonry equivalent struts modelling the infill panels was defined. Furthermore, several literature proposals for the definition of the equivalent strut width have been analysed. Thirteen different proposals have been selected and implemented in thirteen different finite element models. The reliability of each proposal has been investigated and quantified by comparing the dynamic properties of the models with the building dynamic response obtained by the experimental tests. The main outcomes of the analyses highlight that different proposals provide a great variability for the strut width. This brings to a large variability of the mechanical properties of the equivalent struts, and as a consequence, the modelling choice also influences the dynamic behaviour of the numerical models. Currently, this represents a serious issue for the daily designers’ activity. The outcomes provided in the paper, although established for a specific case study, can be extended to a wide range of buildings and should drive the future research studies in order to provide more robust criteria for the modelling of this worldwide building class.

Funder

Italian Department of Civil Protection

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3