Research and Application of the Local Differential Freezing Technology in Deep Alluvium

Author:

Wang Bin12ORCID,Rong Chuanxin12ORCID,Cheng Hua2ORCID,Yao Zhishu2ORCID,Cai Haibing2

Affiliation:

1. State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mine, Anhui University of Science and Technology, Anhui, China

2. School of Civil Engineering and Architecture, Anhui University of Science and Technology, Anhui, China

Abstract

Aiming at the complicated engineering conditions of the auxiliary shaft repair in the Banji coal mine, it was proposed to seal the water around the shaft lining by differential control freezing technology using double rows of holes. The outer row of holes is completely frozen, and the inner row of holes is local differential frozen according to the degree of destruction of the shaft lining. The local differential freezing pipe was successfully developed according to engineering requirements. Numeral simulations were used to predict the development of the freezing temperature field; the results showed that the inward expansion range of the frozen wall formed by the inner row freezing holes was effectively limited and the temperature drop rate of the shaft lining was significantly reduced after the local differential freezing technique was adopted. The on-site monitoring data showed that the temperature of the limited freezing layer was about 5°C higher than that of the conventional freezing layer. During the drainage work and the construction of the new shaft lining, the thickness and average temperature of the frozen wall remained stable, indicating that the implementation of the local differential freezing technology achieved the expected results. Further analysis showed that when the temperature of the limited freezing part of freezing pipes in the inner row was controlled within the range of −15 to −10°C, not only could the frozen wall reach the design thickness and strength but the frost heaving pressure on the existing shaft lining could be effectively eliminated.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3