Blind Source Separation Based on Quantum Slime Mould Algorithm in Impulse Noise

Author:

Zhang Zhiwei1ORCID,Gao Hongyuan1ORCID,Ma Jingya1ORCID,Wang Shihao1ORCID,Sun Helin1ORCID

Affiliation:

1. College of Information and Communication Engineering, Harbin Engineering University, No. 145 Nantong Street, Nangang District, Harbin 150001, China

Abstract

In order to resolve engineering problems that the performance of the traditional blind source separation (BSS) methods deteriorates or even becomes invalid when the unknown source signals are interfered by impulse noise with a low signal-to-noise ratio (SNR), a more effective and robust BSS method is proposed. Based on dual-parameter variable tailing (DPVT) transformation function, moving average filtering (MAF), and median filtering (MF), a filtering system that can achieve noise suppression in an impulse noise environment is proposed, noted as MAF-DPVT-MF. A hybrid optimization objective function is designed based on the two independence criteria to achieve more effective and robust BSS. Meanwhile, combining quantum computation theory with slime mould algorithm (SMA), quantum slime mould algorithm (QSMA) is proposed and QSMA is used to solve the hybrid optimization objective function. The proposed method is called BSS based on QSMA (QSMA-BSS). The simulation results show that QSMA-BSS is superior to the traditional methods. Compared with previous BSS methods, QSMA-BSS has a wider applications range, more stable performance, and higher precision.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3