Machine Learning-Based Ensemble Model for Zika Virus T-Cell Epitope Prediction

Author:

Bukhari Syed Nisar Hussain1ORCID,Jain Amit1ORCID,Haq Ehtishamul2ORCID,Khder Moaiad Ahmad3ORCID,Neware Rahul4ORCID,Bhola Jyoti5ORCID,Lari Najafi Moslem6ORCID

Affiliation:

1. University Institute of Computing, Chandigarh University, Mohali, Punjab, India

2. Department of Biotechnology, University of Kashmir, Srinagar, J & K, India

3. Applied Science University, Al Eker, Bahrain

4. Department of Computing, Mathematics and Physics, Western Norway University of Applied Sciences, Bergen, Norway

5. Electronics & Communication Engineering Department, National Institute of Technology, Hamirpur, India

6. Pharmaceutical Science and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran

Abstract

Zika virus (ZIKV), the causative agent of Zika fever in humans, is an RNA virus that belongs to the genus Flavivirus. Currently, there is no approved vaccine for clinical use to combat the ZIKV infection and contain the epidemic. Epitope-based peptide vaccines have a large untapped potential for boosting vaccination safety, cross-reactivity, and immunogenicity. Though many attempts have been made to develop vaccines for ZIKV, none of these have proved to be successful. Epitope-based peptide vaccines can act as powerful alternatives to conventional vaccines due to their low production cost, less reactogenic, and allergenic responses. For designing an effective and viable epitope-based peptide vaccine against this deadly virus, it is essential to select the antigenic T-cell epitopes since epitope-based vaccines are considered safe. The in silico machine-learning-based approach for ZIKV T-cell epitope prediction would save a lot of physical experimental time and efforts for speedy vaccine development compared to in vivo approaches. We hereby have trained a machine-learning-based computational model to predict novel ZIKV T-cell epitopes by employing physicochemical properties of amino acids. The proposed ensemble model based on a voting mechanism works by blending the predictions for each class (epitope or nonepitope) from each base classifier. Predictions obtained for each class by the individual classifier are summed up, and the class with the majority vote is predicted upon. An odd number of classifiers have been used to avoid the occurrence of ties in the voting. Experimentally determined ZIKV peptide sequences data set was collected from Immune Epitope Database and Analysis Resource (IEDB) repository. The data set consists of 3,519 sequences, of which 1,762 are epitopes and 1,757 are nonepitopes. The length of sequences ranges from 6 to 30 meter. For each sequence, we extracted 13 physicochemical features. The proposed ensemble model achieved sensitivity, specificity, Gini coefficient, AUC, precision, F-score, and accuracy of 0.976, 0.959, 0.993, 0.994, 0.989, 0.985, and 97.13%, respectively. To check the consistency of the model, we carried out five-fold cross-validation and an average accuracy of 96.072% is reported. Finally, a comparative analysis of the proposed model with existing methods has been carried out using a separate validation data set, suggesting the proposed ensemble model as a better model. The proposed ensemble model will help predict novel ZIKV vaccine candidates to save lives globally and prevent future epidemic-scale outbreaks.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3