Multimodal English Teaching Classroom Interaction Based on Artificial Neural Network

Author:

Hua Wenbin1ORCID

Affiliation:

1. School of Foreign Languages, Hubei University of Arts and Science, Xiangyang 441000, Hubei, China

Abstract

In recent years, with the rapid development of science and technology, traditional teaching methods and concepts have been frequently impacted. Artificial neural network shows excellent intelligence because of its powerful nonlinear processing ability and efficient associative function. It is increasingly becoming an emerging object in the field of artificial intelligence. At the same time, in the field of education and teaching, the integration of English teaching and multimodality not only condenses the characteristics of the times but also expands new teaching models, bringing opportunities for the emergence of new teaching models. Based on this, this study proposes an interactive method for multimodal English teaching based on artificial neural networks. It aims to study how to use the autonomous learning of artificial neural networks to accelerate the fusion of different modalities and at the same time make suggestions for different teaching interaction modes. This paper firstly analyzes the interaction of English teaching under the traditional mode. It then proposes a multimodal fusion interaction method based on artificial neural networks. It finally explores the feasibility of the new interaction theory by setting up an experimental group and a control group. Through the analysis of the experimental data, the final data results show that the multimodal fusion interaction based on artificial neural network has a very significant effect, and the students' interest in the English classroom is as high as 81.9%. This fully demonstrates the great value of the new fusion method, and it has certain enlightening significance for the establishment of English teaching modes and curriculum reform.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference23 articles.

1. Electricity Prices Forecasting using Artificial Neural Networks

2. Application of artificial neural networks to nuclear power plant transient diagnosis

3. Threat analysis of IoT networks using artificial neural network intrusion detection system;E. Hodo;Tetrahedron Letters,2017

4. Prediction of wheat production using artificial neural networks and investigating indirect factors affecting it: case study in Canterbury province, New Zealand;M. Safa;Journal of Agricultural Science and Technology A,2018

5. Rhizomes and plateaus: a study of digital communities of practice in University College English Teaching;T. K. aard;Afore,2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3