Investigation of Machinability Characteristics of EDMed Inconel 825 Alloy under Multidimensional Parametric Modeling by Using Holistic Grey-PCA Statistical Models

Author:

Sahu Nitin Kumar1ORCID,Singh Mukesh Kumar1ORCID,Getrude Mutono-Mwanza Bupe2ORCID,Sahu Atul Kumar1ORCID

Affiliation:

1. Department of Industrial and Production Engineering, Guru Ghasidas (Central) Vishwavidyalaya, Bilaspur 495009, Chhattisgarh, India

2. Graduate School of Business, University of Zambia, Great East Road Campus, Lusaka, Zambia

Abstract

The current social and industrial communities exceedingly demanded the materials that dealt with rich mechanical properties, i.e., the rich strength, hardness, reliability, high resistance against corrosion and oxidation, and high toughness and refractoriness. Recently, the researchers ascertained the comprehensive applications of these difficult to machine materials in the domain of automotive, aeronautical, nuclear industries etc. It is claimed that it is quite hard and expensive for machining these superadvanced materials by traditional machining operations. In the present study, worldwide promising nickel-based superalloy Inconel 825 material is used due to its outstanding mechanical and thermal properties at eminent temperatures and also having broad application in imperative engineering fields. The authors probed that machining cost and smart machinability index have become the gigantic concern in EDM operation; however, these can be minimized by adapting a conduit of evaluation of the optimum setting among multiple input parameters. It was a challenging task, which is respected by authors as the research gaps to be sorted out. To fulfill research gaps, the authors encountered imperative significant EDM input parameters, i.e., spark gap (Sg), gap voltage (Vg), pulse on time (Ton), pulse off time (Toff), Peak Current (Ip), Servo feed (Sf), Depth of Cut (Dc) and difficulty index (Di) corresponding to output responses, i.e., power consumption (Pc), machining time (Mt), and material removal rate (MRR) for framing the machinability index/model for conducting experiments and collecting objectives/responses/outputs. Next, the authors conducted experiments using the Taguchi L27 orthogonal array model in the nonvibratory domain for recording output responses. Later, to potentially access the results, the authors integrated the computational Taguchi methodology with dual models which is called as Taguchi-grey relational analysis (T-GRA) and Taguchi-principal component analysis (T-PCA). The optimum setting condition among considered inputs is discussed in the conclusion section. Later, confirmatory test gratified the evaluated optimum settings which is yielding an improvement of 0.16262 and 0.34398 score in executing T-GRA and T-PCA, respectively. In continuation, the current research evidenced that pulse off time is the chief significant process parameter having p values 0.005 and 0.001 for T-GRA and T-PCA, respectively. It is also seen that the depth of cut is also another important significant process parameter having p values 0.061 and 0.073 for T-GRA and T-PCA, respectively. Moreover, the current research work also investigated the effect of variation of momentous input process parameters over the surface topography and their utility in improving surface integrity and eliminating the micropores and cracks.

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3