Fungal- and Algal-Derived Synthesis of Various Nanoparticles and Their Applications

Author:

Michael Anugrah1ORCID,Singh Aniket1ORCID,Roy Arpita1ORCID,Islam Md. Rabiul2ORCID

Affiliation:

1. Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, India

2. Department of Pharmacy, University of Asia Pacific, Dhaka, Bangladesh

Abstract

Nanoparticles synthesis through biological mediated methods with a particular focus on the processes mediated by fungi and algae is discussed, which systematically reviews nanoparticle characterization, composition, synthesis methods, and, lastly but not least, the applications of NPs across five different categories to provide a reference for future research. Most traditional methods to generate nanoparticles have certain limitations, like the toxicity of precursor materials, the need for high-temperature management, and the high cost of synthesis, which ultimately hinders their utility in sectors. Greener synthesis through fungus and algae done through bioreduction by biomolecules or enzymes present in them is low-energy, low-cost, and needs a low-temperature environment, providing a unique technique for the manufacture of various metallic nanoparticles utilized in an array of industries and healthcare.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Organic Chemistry,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3