Affiliation:
1. Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250013, China
Abstract
With increasing developments in information technology, IT projects have received widespread attention. However, the success rate of large information technology projects is extremely low. Most current extension forecast models are designed based on a balanced number of samples and require a large amount of training data to achieve an acceptable prediction result. Constructing an effective extension forecast model with a small number of actual training samples and imbalanced data remains a challenge. This paper proposes a Meta-IP model based on transferable knowledge bases with few-shot learning and a model-agnostic meta-learning improvement algorithm to solve the problems of sample scarcity and data imbalance. The experimental results show that Meta-IP not only outperforms many current imbalance processing strategies but also resolves the problem of having too few samples. This provides a new direction for IT project extension forecasts.
Funder
Key Technology Research and Development Program of Shandong
Subject
General Engineering,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献