Statistical Learning-Based Spatial Downscaling Models for Precipitation Distribution

Author:

Wu Yichen1,Zhang Zhihua12ORCID,Crabbe M. James C.345ORCID,Chandra Das Lipon16

Affiliation:

1. Climate Modeling Laboratory, School of Mathematics, Shandong University, Jinan 250100, China

2. MOE Key Laboratory of Environmental Change and Natural Disaster, Beijing Normal University, Bejing 100875, China

3. Wolfson College, Oxford University, Oxford OX2 6UD, UK

4. Institute of Biomedical and Environmental Science & Technology, University of Bedfordshire, Luton LU1 3JU, UK

5. School of Life Sciences, Shanxi University, Taiyuan 030006, China

6. University of Chittagong, Chittagong 4331, Bangladesh

Abstract

The downscaling technique produces high spatial resolution precipitation distribution in order to analyze impacts of climate change in data-scarce regions or local scales. In this study, based on three statistical learning algorithms, such as support vector machine (SVM), random forest regression (RF), and gradient boosting regressor (GBR), we proposed an efficient downscaling approach to produce high spatial resolution precipitation. In order to demonstrate efficiency and accuracy of our models over traditional multilinear regression (MLR) downscaling models, we did a downscaling analysis for daily observed precipitation data from 34 monitoring sites in Bangladesh. Validation revealed that R 2 of GBR could reach 0.98, compared with RF (0.94), SVM (0.88), and multilinear regression (MLR) (0.69) models, so the GBR-based downscaling model had the best performance among all four downscaling models. We suggest that the GBR-based downscaling models should be used to replace traditional MLR downscaling models to produce a more accurate map of high-resolution precipitation for flood disaster management, drought forecasting, and long-term planning of land and water resources.

Funder

European Commission’s Horizon 2020 Framework Program

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3