Numerical Simulation of Dendrite Motion Fidelity Based on the Interface Capture Method

Author:

Zhang Bing1ORCID,Zhang Shijie1,Zhang Yu1,Zhang Siyu1,Zhu Baofeng1,Li Ri1ORCID

Affiliation:

1. School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300401, China

Abstract

During alloy solidification, many free grains in the melt have important effects on the final microstructure and composition distributions. In this paper, grain motion is calculated based on an interface tracking method coupled with a cellular automata (CA) method. First, the interface tracking capabilities of the level set, simple linear interface calculation (SLIC), and piecewise linear interface calculation (PLIC) methods are compared, and the fidelity of the three models is explored. Then, the coupling degrees of these three models with the CA method are analyzed. Finally, the PLIC method is used to simulate various behaviors of grain movement and to verify the authenticity of the dendrite motion calculation. The simulation results show that the VOF methods more readily coupled with the CA model than the level set method, and it is more suitable for calculating the motion behaviors of dendrites. Among the VOF methods, the interface reconstructed by the SLIC method is relatively rough and can only calculate objects with simple morphologies. The PLIC method has a fine interface and small error in the calculation of dendrite movement, and it does not significantly impact the subsequent calculations.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3