Autonomous Identification of Bridge Concrete Cracks Using Unmanned Aircraft Images and Improved Lightweight Deep Convolutional Networks

Author:

Song Fei1ORCID,Sun Ying1,Yuan Guixia1ORCID

Affiliation:

1. School of Information Technology, Jiangsu Open University, Nanjing 210017, China

Abstract

The identification of the development of structural defects is an important part of bridge structure damage diagnosis, and cracks are considered the most typical and highly dangerous structural disease. However, existing deep learning-based methods are mostly aimed at the scene of concrete cracks, while they rarely focus on designing network architectures to improve the vision-based model performance from the perspective of unmanned aircraft system (UAS) inspection, which leads to a lack of specificity. Because of this, this study proposes a novel lightweight deep convolutional neural network-based crack pixel-level segmentation network for UAS-based inspection scenes. Firstly, the classical encoder-decoder architecture UNET is utilized as the base model for bridge structural crack identification, and the hourglass-shaped depthwise separable convolution is introduced to replace the traditional convolutional operation in the UNET model to reduce model parameters. Then, a kind of lightweight and efficient channel attention module is used to improve model feature fuzzy ability and segmentation accuracy. We conducted a series of experiments on bridge structural crack detection tasks by utilizing a long-span bridge as the research item. The experimental results show that the constructed method achieves an effective balance between reasoning accuracy and efficiency with the value of 97.62% precision, 97.23% recall, 97.42% accuracy, and 93.25% IOU on the bridge concrete crack datasets, which are significantly higher than those of other state-of-the-art baseline methods. It can be inferred that the application of hourglass-shaped depth-separable volumes can actively reduce basic model parameters. Moreover, the lightweight and efficient attention modules can achieve local cross-channel interaction without dimensionality reduction and improve the network segmentation performance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3