Settlement Prediction Based on the Relationship between the Empirical and Analytical Solutions of a Cylindrical Cavity under Undrained Conditions

Author:

Mabe Fogang Pieride12ORCID,Liu Yang1ORCID,Yu Pengqiang1ORCID

Affiliation:

1. School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Earth Sciences, University of Yaoundé I, Yaoundé, P.O. Box 812, Cameroon

Abstract

Settlements on the ground surface often relate to excavating an underground cavity in cities. Movement on the ground surface can create a void between the wall of the cylindrical cavity and the lining. Thus, this study proposes an approximate solution under undrained conditions, based on the relationship between the empirical and analytical methods for predicting ground settlement around a cylindrical cavity. Based on mathematical formulas, the results obtained by the geometrical representation are then associated with the experimental data. The study revealed that the settlement prediction is related either to ground surface loads or to the ground failure point. The expansion of the cylindrical cavity is solved as a linear elasticity problem using a system of first-order ordinary differential equations containing two components in the Cartesian coordinates. The stress distribution around the cylindrical cavity is evaluated based on a biaxial force. The proposed approaches show that the results (empirical and analytical) obtained are approximately similar. Hence, the relationship between the two methods can be best suited for predicting the settlement around a cylindrical cavity by evaluating both the maximum settlement and the maximum surface displacement.

Funder

Beijing Municipal Natural Science Foundation

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3