A Method of Offline Reinforcement Learning Virtual Reality Satellite Attitude Control Based on Generative Adversarial Network

Author:

Zhang Jian1ORCID,Wu Fengge2ORCID

Affiliation:

1. University of Chinese Academy of Sciences, Institute of Software, Chinese Academy of Science, Beijing, China

2. Institute of Software, Chinese Academy of Science, Beijing, China

Abstract

Virtual reality satellites give people an immersive experience of exploring space. The intelligent attitude control method using reinforcement learning to achieve multiaxis synchronous control is one of the important tasks of virtual reality satellites. In real-world systems, methods based on reinforcement learning face safety issues during exploration, unknown actuator delays, and noise in the raw sensor data. To improve the sample efficiency and avoid safety issues during exploration, this paper proposes a new offline reinforcement learning method to make full use of samples. This method learns a policy set with imitation learning and a policy selector using a generative adversarial network (GAN). The performance of the proposed method was verified in a real-world system (reaction-wheel-based inverted pendulum). The results showed that the agent trained with our method reached and maintained a stable goal state in 10,000 steps, whereas the behavior cloning method only remained stable for 500 steps.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference21 articles.

1. Mastering Atari, Go, chess and shogi by planning with a learned model

2. Playing Atari with deep reinforcement learning;V. Mnih,2013

3. Mastering the game of Go with deep neural networks and tree search

4. Openai gym;G. Brockman;CoRR,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3