Affiliation:
1. Young Researchers and Elites Club, Science and Research Branch, Islamic Azad University, Tehran, Iran
Abstract
High Weissenberg boundary layer flow of viscoelastic fluids on a stretching surface has been studied. The flow is considered to be steady, low inertial, and two-dimensional. Upon proper scaling and by means of an exact similarity transformation, the nonlinear momentum and constitutive equations of each layer transform into the respective system of highly nonlinear and coupled ordinary differential equations. Numerical solutions to the resulting boundary value problem are obtained using an efficient shooting technique in conjunction with a variable stepping method for different values of pressure gradients. It is observed that, unlike the Newtonian flows, in order to maintain a potential flow, normal stresses must inevitably develop. The velocity field and stresses distributions over plate are presented for difference values of pressure gradient and Weissenberg numbers.
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Hardware and Architecture,Mechanical Engineering,General Chemical Engineering,Civil and Structural Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献