A Probabilistic Assessment Model for Train-Bridge Systems: Special Attention on Track Irregularities

Author:

Liu Dejun1ORCID,Xin Lifeng2ORCID,Li Xiaozhen3ORCID,Zhang Jiaxin3ORCID

Affiliation:

1. College of Civil Engineering & Architecture, Jiaxing University, Jiaxing, China

2. School of Mechanics, Civil Engineering & Architecture, Northwestern Polytechnical University, Xi'an, China

3. Department of Bridge Engineering, Southwest Jiaotong University, Chengdu, China

Abstract

In this paper, a probabilistic model devoted to investigating the dynamic behaviors of train-bridge systems subjected to random track irregularities is presented, in which a train-ballasted track-bridge coupled model with nonlinear wheel-rail contacts is introduced, and then a new approach for simulating a random field of track irregularities is developed; moreover, the probability density evolution method is used to describe the probability transmission from excitation inputs to response outputs; finally, extended analysis from three aspects, that is, stochastic analysis, reliability analysis, and correlation analysis, are conducted on the evaluation and application of the proposed model. Besides, compared to the Monte Carlo method, the high efficiency and the accuracy of this proposed model are validated. Numerical studies show that the ergodic properties of track irregularities on spectra, amplitudes, wavelengths, and phases should be taken into account in stochastic analysis of train-bridge interactions. Since the main contributive factors concerning different dynamic indices are rather different, different failure modes possess no obvious or only weak correlations from the probabilistic perspective, and the first-order reliability theory is suitable in achieving the system reliability.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3