A Novel Long Short-Term Memory Predicted Algorithm for BDS Short-Term Satellite Clock Offsets

Author:

Wen Tailai1ORCID,Ou Gang1ORCID,Tang Xiaomei1ORCID,Zhang Pengyu1ORCID,Wang Pengcheng1ORCID

Affiliation:

1. College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China

Abstract

The satellite clocks carried on the BeiDou navigation System (BDS) are a self-manufactured hydrogen clock and improved rubidium clock, and their on-orbit performance and stabilities are not as efficient as GPS and Galileo satellite clocks caused of the orbital diversity of the BDS and the complexity of the space operating environment. Therefore, the existing BDS clock product cannot guarantee the high accuracy demand for precise point positioning in real-time scenes while the communication link is interrupted. To deal with this problem, we proposed a deep learning-based approach for BDS short-term satellite clock offset modeling which utilizes the superiority of Long Short-Term Memory (LSTM) derived from Recurrent Neural Networks (RNN) in time series modeling, and we call it QPLSTM. The ultrarapid predicted clock products provided by IGS (IGU-P) and four widely used prediction methods (the linear polynomial, quadratic polynomial, gray system (GM (1,1)), and Autoregressive Integrated Moving Average (ARIMA) model) are selected to compare with the QPLSTM. The results show that the prediction residual is lower than clock products of IGU-P during 6-hour forecasting and the QPLSM shows a greater performance than the mentioned four models. The average prediction accuracy has improved by approximately 79.6, 69.2, 80.4, and 77.1% and 68.3, 52.7, 66.5, and 69.8% during a 30 min and 1-hour forecasting. Thus, the QPLSTM can be considered as a new approach to acquire high-precision satellite clock offset prediction.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3