Affiliation:
1. Department of Management, Aarhus University, Aarhus, Denmark
2. ScienceAtHome, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
Abstract
Computational modeling is widely used to study how humans and organizations search and solve problems in fields such as economics, management, cultural evolution, and computer science. We argue that current computational modeling research on human problem-solving needs to address several fundamental issues in order to generate more meaningful and falsifiable contributions. Based on comparative simulations and a new type of visualization of how to assess the nature of the fitness landscape, we address two key assumptions that approaches such as the NK framework rely on: that the NK captures the continuum of the complexity of empirical fitness landscapes and that search behavior is a distinct component, independent from the topology of the fitness landscape. We show the limitations of the most common approach to conceptualize how complex, or rugged, a landscape is, as well as how the nature of the fitness landscape is fundamentally intertwined with search behavior. Finally, we outline broader implications for how to simulate problem-solving.
Subject
Multidisciplinary,General Computer Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献