Self-Assembly of Diphenylalanine-Based Nanostructures in Water and Electrolyte Solutions

Author:

Acuña Sergio M.1ORCID,Veloso María C.1,Toledo Pedro G.2ORCID

Affiliation:

1. Department of Food Engineering, University of Bío-Bío, Av. Andres Bello S/N, P.O. Box 447, Chillán, Chile

2. Department of Chemical Engineering and Laboratory of Surface Analysis (ASIF), University of Concepción, Correo 3, P.O. Box 160-C, Concepción, Chile

Abstract

Diphenylalanine (FF) is a peptide that can form different nanostructures; this makes it particularly attractive for both biological and technological applications. However, any application using this type of nanostructures requires controlling their size and shape. Information is provided about the various structures formed through the peptide FF self-assembly in different salt solutions (NaCl, CaCl2, and AlCl3), concentrations (50 mM, 100 mM, and 200 mM), and pH (3 to 10). Transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the nanotubes. Results show that FF nanotube formation through self-assembly is a delicate balance between electrostatic, hydrogen bonding, and hydrophobic interactions; any imbalance in these can impede nanotube formation. Our results demonstrate that salts, such as NaCl and CaCl2, along with the studied concentrations promote the formation of very long nanotube agglomerates. This would be due to a combined screening effect and the fact that cations are structure-forming and promote hydrophobic interactions; therefore, nanotube agglomeration occurs and also benefits electrostatic interactions, hydrogen bonds, and longer nanotubes. The presence of AlCl3 produces an imbalance in the abovementioned interactions because of excess Cl-, a structure-breaking anion that impedes the nanostructure formation.

Funder

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3