Affiliation:
1. School of Electrical and Engineer, Anhui Polytechnic University, Wuhu 241000, China
Abstract
Skin diseases have a serious impact on people’s life and health. Current research proposes an efficient approach to identify singular type of skin diseases. It is necessary to develop automatic methods in order to increase the accuracy of diagnosis for multitype skin diseases. In this paper, three type skin diseases such as herpes, dermatitis, and psoriasis skin disease could be identified by a new recognition method. Initially, skin images were preprocessed to remove noise and irrelevant background by filtering and transformation. Then the method of grey-level co-occurrence matrix (GLCM) was introduced to segment images of skin disease. The texture and color features of different skin disease images could be obtained accurately. Finally, by using the support vector machine (SVM) classification method, three types of skin diseases were identified. The experimental results demonstrate the effectiveness and feasibility of the proposed method.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
84 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献