Online Structural Health Monitoring of Rotating Machinery via Ultrasonic Guided Waves

Author:

Li Ming12ORCID,Meng Guang23ORCID,Li Hongguang2,Qiu Jianxi2,Li Fucai2

Affiliation:

1. Shanghai Key Laboratory of Spacecraft Mechanism, Aerospace System Engineering Shanghai, Shanghai, China

2. State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, Shanghai, China

3. Shanghai Academy of Spaceflight Technology, Shanghai, China

Abstract

This paper focuses on the establishment of the online structural health monitoring strategy for rotating shafts using ultrasonic guided waves. The dispersion of cylindrical shaft is investigated and a conclusion that the longitudinal ultrasonic wave propagating along the cylindrical shaft can hardly be interfered by the rotation is obtained. The experimental system and the numerical simulation model have been constructed, based on the fact that the experimental research and the numerical verification have been conducted intensively. The strategy can be concluded no matter the cracked rotor is at rest or rotating. Comparing with the same rotor without crack, the amplitudes of the guided wave packages descend along the transmission path and the symmetric path where crack exists; however, the amplitude of the wave packages will ascend along the other transmission paths.

Funder

Shanghai Sailing Program

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Excitation and Propagation of Longitudinal L (0, 2) Mode Ultrasonic Guided Waves for the Detection of Damages in Hexagonal Pipes: Numerical and Experimental Studies;Shock and Vibration;2021-04-22

2. Data Reduction Strategies;Structural Health Monitoring Damage Detection Systems for Aerospace;2021

3. A baseline-free damage detection approach based on distance compensation of guided waves;Journal of Low Frequency Noise, Vibration and Active Control;2018-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3