Optimization Model of Logistics Task Allocation Based on Genetic Algorithm

Author:

Wang Xueli1,Gao Jingjuan1ORCID

Affiliation:

1. Shijiazhuang Institute of Railway Technology, Shijiazhuang 050041, China

Abstract

In order to improve the efficiency of logistics task allocation, the rationality and algorithm of the logistics cloud task scheduling model based on genetic algorithm are proposed in this paper. Firstly, the basic principle of genetic algorithm is introduced, the logistics cooperative distribution model is constructed, and the judgment mathematical model of the transfer point of the logistics distribution demand point is constructed. Genetic algorithm is used to solve the logistics distribution path planning model, and the model is simplified. The complex multiobjective optimization problem is transformed into a single-objective optimization problem through preference vector. The genetic algorithm and open-source algorithm on Python are used to simulate the model proposed in this paper. From the change curve of the objective function, after 100 generations of iteration, the value of objective function increases rapidly from 30 to 130 and slowly from generation 5 to generations 40 to 130. Subsequently, the 40th generation to 60th generation were rapidly upgraded to 160. Finally, the 60th to 100th generations are basically stable at about 170. The cost in the scheduling process decreases gradually with the increase of the number of iterations of the algorithm, from the initial unit cost of nearly 200 to 120. Then it gradually decreases to about 80. Genetic algorithm shows the ability of efficient and accurate solution in this 100-generation iteration. The genetic algorithm is used to solve the problem. The algorithm parameters are as follows: population size pop size = 300, maximum number of iterations max gen = 200, crossover probability PC = 0.8, and mutation probability PM = 0.1. Using the data in this paper and substituting it into the model established in this paper, the following distribution scheme is obtained: p the minimum distribution cost is 601.58 yuan, the distribution vehicle is 5, and the total mileage is 477.41. After using the algorithm to optimize the path, the path interleaving is greatly reduced, and the vehicles do not take the repeated route, which can greatly save the cost. After calculation, the total mileage after optimization is 74.8% lower than that before optimization, and the cost is significantly reduced by 72.8%. To sum up, the last kilometer distribution algorithm proposed in this paper can greatly reduce the cost of logistics resource scheduling, which has obvious research significance.

Funder

Shijiazhuang Institute of Railway Technology

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3