Risk Early-Warning Framework for Government-Invested Construction Project Based on Fuzzy Theory, Improved BPNN, and K-Means

Author:

Tao Yao1ORCID,Yong Xingkai1,Yang Jiangong2,Jia Xuefeng1,Chen Wenjun1,Zhou Jianli13ORCID,Wu Yunna1ORCID

Affiliation:

1. School of Economics and Management, North China Electric Power University, Beijing, China

2. Aviation Industry Corporation of China Ltd., Beijing, China

3. School of Economics and Management, Xinjiang University, Urumqi 83000, China

Abstract

Government-invested construction project (GICP) has a great significance to social and economic development but suffered many risks due to its large scale, huge investment, and long construction period. The risks in GICP are complex so as to lead the project to failure; it is extremely urgent to take the risk management of GICP. This study establishes a risk early-warning framework to help the managers to understand the risk threat in advance, which supports them to make proper management strategies for the risk control. The whole framework can be concluded as three parts: information collection, data processing, and result prediction. Firstly, the 16 risk factors of GICP are identified. To express the hesitance of human decision and reduce the information loss in quantification, hesitant fuzzy linguistic term set (HFLTS) and triangular fuzzy number (TFN) are used to collect the experts’ linguistic term and transform them into numerical value. And then, these inputs are simplified into five factors based on principal component analysis (PCA), decreasing the impact of redundancy to risk early-warning. Meanwhile, the warning level is divided based on K-means, which avoids the subjectivity of experience decision. Further, the backpropagation neural network optimized by the genetic algorithm (GA-BP) is used to complete the simulation of risk value. The 75 groups of questionnaire data are used to train the network and the 10 groups are used as test set. The validation of the proposed framework has been verified with an average relative error in 7.2% and the average absolute error in 3.91. Finally, corresponding suggestions to prevent and control the different risks in GICP are put forward.

Funder

Chinese National Funding of Social Sciences

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3