Anomaly Detection and Restoration for AIS Raw Data

Author:

Chen Shuguang1ORCID,Huang Yikun2ORCID,Lu Wei3

Affiliation:

1. Department School of Management, Xi’an University of Finance and Economics, Xi’an 710100, China

2. Concord University College of Fujian Normal University, Fuzhou 350117, China

3. School of Information, Xi’an University of Finance and Economics, Xi’an 710100, China

Abstract

With the wide application of location detection sensors in maritime surveillance, a large amount of raw automatic identification system (AIS) data is produced by many moving ships. Anomaly detection and restoration of the big AIS data are important issues in marine data mining, because they offer a reliable support to users to mining the behaviors of ships. This paper develops a novel approach to detect anomaly AIS data based on the ships’ maneuverability, such as the maximum acceleration, the minimum acceleration, the maximum distance, and the maximum angular displacement, which were designed to detect the anomaly AIS data. Furthermore, the performance of the developed approach is compared with that of Daiyong-Zhang’s method and Behrouz-Haji-Soleimani’s method to assess its detection efficiency. The results show that the proposed approach can be applied to easily extract the abnormal data. Finally, based on the developed approach to detect the anomaly data and cubic spline interpolation method to restore the AIS data, experiments are conducted on the AIS data of Xiamen Port of Fujian Province, China, that prove to be effective for marine intelligence research.

Funder

Fujian Normal University

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3