Influence of Cu-Doping Concentration on the Structural and Optical Properties of SnO2 Nanoparticles by Coprecipitation Route

Author:

Habte Abebe G.1ORCID,Hone Fekadu Gashaw2ORCID,Dejene F. B.3ORCID

Affiliation:

1. Physics Department, Hawassa University, P.O. Box 5, Hawassa, Ethiopia

2. Physics Department, Addis Ababa University, P.O. Box 1176, Addis Ababa, Ethiopia

3. Department of Chemical and Physical Sciences, Walter Sisulu University, Private Bag X1, Code 5117, Mthatha, South Africa

Abstract

Tin dioxide (SnO2) nanoparticles doped with varying concentrations of copper were synthesized and characterized using various techniques. The X-ray diffraction analysis revealed that all doped and undoped SnO2 samples had a rutile-type tetragonal structure. The average crystalline size of the doped samples estimated using Scherrer’s formula and the Williamson–Hall plot decreased as dopant concentration increased. Images from scanning electron microscopy revealed spherical grains in the samples. The transmission electron microscope was used to examine the particle nature, and nearly spherical particles were discovered. The energy-dispersive X-ray spectroscopy analyses confirmed that the synthesized nanoparticles were nearly stoichiometrically composed of the expected elements copper, oxygen, and tin. The bandgap energy of doped and undoped SnO2 nanoparticles was determined using UV–visible diffuse reflectance spectra, and it was found to decrease as Cu2+ ion concentration increased. The photoluminescence study at the excitation wavelength of 300 nm revealed defect-oriented emissions between 350 and 500 nm. All the obtained results showed that the physical properties of SnO2 can be easily engineered through Cu doping for various optoelectronic applications using a low-cost coprecipitation method.

Publisher

Hindawi Limited

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3