PI3K/Akt and ERK1/2 Signalling Are Involved in Quercetin-Mediated Neuroprotection against Copper-Induced Injury

Author:

Zubčić Klara1ORCID,Radovanović Vedrana2ORCID,Vlainić Josipa2ORCID,Hof Patrick R.3ORCID,Oršolić Nada4ORCID,Šimić Goran1ORCID,Jazvinšćak Jembrek Maja25ORCID

Affiliation:

1. Department for Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, 10000 Zagreb, Croatia

2. Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia

3. Nash Family Department of Neuroscience, Friedman Brain Institute, and Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

4. Department of Animal Physiology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

5. Department of Psychology, Catholic University of Croatia, Ilica 242, 10000 Zagreb, Croatia

Abstract

Copper, a transition metal with essential cellular functions, exerts neurotoxic effects when present in excess by promoting production of reactive oxygen species (ROS). The aim of the present study was to investigate potential benefits of flavonoid quercetin against copper-induced toxicity. Results obtained with MTT assay indicate that the effects of quercetin are determined by the severity of the toxic insult. In moderately injured P19 neuronal cells, concomitant treatment with 150 μM quercetin improved viability by preventing ROS formation, caspase-3 activation, and chromatin condensation. Western blot analysis revealed that quercetin reduced copper-induced increase in p53 upregulated modulator of apoptosis (PUMA) expression and promoted upregulation of nucleoside diphosphate kinase NME1. Levels of p53 and Bax proteins were not affected by both copper and quercetin. UO126 and wortmannin, inhibitors of ERK1/2 and PI3K/Akt signalling pathways, respectively, prevented neuroprotective effects of quercetin. In severely injured neurons, 30 μM quercetin exerted strong prooxidative action and exacerbated cytotoxic effects of copper, whereas 150 μM quercetin failed to affect neuronal survival. These results demonstrate the dual nature of quercetin action in copper-related neurodegeneration. Hence, they are relevant in the context of considering quercetin as a possible therapeutic for neuroprotection and imply that detailed pharmacological and toxicological studies must be carried out for natural compounds capable of acting both as antioxidants and prooxidants.

Funder

National Institutes of Health

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3