A Quasi-3D Numerical Model for Grout Injection in a Parallel Fracture Based on Finite Volume Method

Author:

Li Xiaolong1,Hao Meimei1ORCID,Zhong Yanhui1,Zhang Bei1,Wang Fuming1,Wang Lianbang1

Affiliation:

1. School of Water Conservancy Science & Engineering, Zhengzhou Univ., 100 Science Ave., Zhengzhou City 450001, China

Abstract

The purpose of the present work is to develop a quasi-3D numerical method that can be used to study the diffusion mechanism of grout injection in a rock fracture based on the collocated structured grid of the finite volume method (FVM). Considering the characteristics of fracture in geometry that the aperture is much less than its length and width, the Hele-Shaw model is introduced to deduce the z-derivatives of velocities u and v at walls, which is a function of the relevant average velocity and the fracture aperture. The traditional difference scheme for the diffusive term is partly substituted with the derived analytical expressions; hence a three-dimensional problem of grout flow in the parallel fracture can be transformed into a two-dimensional one that concerns fracture aperture. The new model is validated by the analytical solution and experimental data on three cases of grouting in the parallel-plate fracture. Compared with the results from ANSYS-Fluent software, the present model shows better agreement with the analytical solution for the distribution of pressure and velocity. Furthermore, the new model needs less grid unit, spends less time, but achieves greater accuracy. The complexity of the grout flow field in the rock fracture is reduced; thus the computational efficiency can be improved significantly.

Funder

National Key Research and Development Plan

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3