Investigation on the Properties and Distribution of Air Voids in Porous Asphalt with Relevance to the Pb(II) Removal Performance

Author:

Zhao Yao1ORCID,Tong Lei2,Zhu Yating1

Affiliation:

1. College of Civil Engineering, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China

2. Jiangsu Sinoroad Engineering and Technology Institute Ltd., Co., 14th Floor of Kechuang Square, 88 Pubin Road, Nanjing 210016, China

Abstract

In this study, one type of porous asphalt (PA) mixture was designed at two different air void (AV) contents. Direct information regarding both the dimensional properties and AV distribution within two PA specimens in their natural states were observed, compared, and analyzed based on the X-ray CT (computed tomography) and digital image analysis techniques and fractal geometry theory. The characteristics of AV distribution, including AV content, AV number, and AV volume were quantified by comparing pore structure at different specimen heights. The dimensional properties of voids at different specimen heights were characterized by parameters in terms of equivalent diameter, specific surface area, and fractal dimension. The Pb(II) removal performance of the two PA mixtures was examined by an artificial rainfall event. The relationship between the PA microstructure and Pb(II) removal rate was then determined. It is observed from this study that the overall distribution pattern of AV inside PA specimen is independent of AV content. The distributional parameters including AV content, AV number, and AV volume show good correlations with three dimensional parameters, respectively. The Pb(II) removal in general appears to be independent of AV content because both PA mixtures have the same level of performance in removing Pb(II) during the rainfall period. The removal rate of Pb(II) shows good correlation with AV content, AV number, AV volume, and equivalent diameter of AV, indicating that a perfect distribution of AV within PA mixture is more important than the complex geometries of voids for getting a higher Pb(II) removal during rainfall event and without providing a temporary storage of stormwater in PA mixture. These findings provide an effective evidence to reveal that the AV distribution and properties characteristics have significant implications for pollutant removal in field PA pavement system.

Funder

Natural Science Research of Jiangsu Higher Education Institutions of China

Publisher

Hindawi Limited

Subject

General Engineering,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3